If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=286
We move all terms to the left:
3x^2-(286)=0
a = 3; b = 0; c = -286;
Δ = b2-4ac
Δ = 02-4·3·(-286)
Δ = 3432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3432}=\sqrt{4*858}=\sqrt{4}*\sqrt{858}=2\sqrt{858}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{858}}{2*3}=\frac{0-2\sqrt{858}}{6} =-\frac{2\sqrt{858}}{6} =-\frac{\sqrt{858}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{858}}{2*3}=\frac{0+2\sqrt{858}}{6} =\frac{2\sqrt{858}}{6} =\frac{\sqrt{858}}{3} $
| -6x+16x+12=10 | | 17+4x=764 | | 764=4x+17 | | -27=-4x+17 | | 3(2x–4)=8x+14 | | -10x^2+100x-360=0 | | 9x+210=4x÷140 | | 5m+1=10m-9 | | 10x^2-100x+360=0 | | 3/4(n=2)=-1/6(n+6) | | 5÷9(g+18)=(1÷6)g+3 | | 2(1/2q+1=-3(2q+1)+4(2q+1) | | 10x^2-64x+36=0 | | 10x^2-64x-36=0 | | -4y-9+15-y=(5y-3) | | 40-v=4v | | 28y-6(3y-5=40 | | -11v+18=-10v | | 3x+3=3×+3 | | 13w-10=5w-10+8 | | 3/1,800=x/8,400 | | 3a-5=-4+17 | | x+x(.3)=125 | | 55=65=2x | | -13=v+7 | | 2.1c=0.5c-14.88 | | 1/5x=10000 | | 3m-12=-9+4m | | 48=x+4 | | -2-6s=10-3s | | 8x+17=-24-8x | | 8x+17=-24=8x |